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Improving search algorithms by using intelligent coordinates
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We consider algorithms that maximize a global funct®im a distributed manner, using a different adaptive
computational agent to set each variable of the underlying space. Each-ageself-interested; it sets its
variable to maximize its own functiog, . Three factors govern such a distributed algorithm’s performance,
related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit all three
factors by modifying a search algorithm’s exploration stage: rather than random exploration, each coordinate of
the search space is now controlled by a separate machine-learning-based “player” engaged in a noncooperative
game. Experiments demonstrate that this modification improves simulated anri&{jriny up to an order of
magnitude for bin packing and for a model of an economic process run over an underlying network. These
experiments also reveal interesting small-world phenomena.
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[. INTRODUCTION traditionally studied in three separate fields: game theory,
machine learning/statistics, and optimization theory, respec-
Many systems found in nature have inspired computatively. So any complete science of collectives must incorpo-
tional algorithms for how to maximize a provided high- rate insights from all three fields; no single one of the fields
dimensional function. In some of these algorithms the valuesuffices.
of the underlying coordinates are controlled by separate Previous work in the COllective INtelligencéCOIN)
players engaged in a noncooperative game; their equilibriurframework has partially accomplished this, addressing the
joint state(hopefully) maximizes the provided global func- first two issues. That work is an extension of game-theoretic
tion G. Examples of such natural systems are auctions anthechanism design, to include off-equilibrium behavior,
clearing of markets. Typically, in the computational algo- learnability issues, nonhuman, (e.g.,g,, for which incen-
rithms inspired by such *“collectives” of players, each tive compatibility is irrelevant and arbitraryG [11,12. In
“player” is a separate machine-learning algoritfitn2], e.g., domains from network routing to congestion problems

a reinforcement-learningRL) algorithm[3,4]. COIN-based algorithms beat traditional techniques, by up to
There are three crucial issues concerning such collectiveseveral orders of magnitudd,10].
The first is whether the payoff functicg, of each playery Here we address all three issues at once, by replacing the

is sufficiently sensitive to the value of the coordingteon-  exploration step in any exploration/exploitation search algo-
trols in comparison to those of the other coordinates. If thigithm. In the exploration step each separate coordinate of the
is not the case, it is not feasible fgrto learn how to setits multicoordinate space being searched is made “intelligent,”
coordinate to achieve high payoff. The second crucial issués value being the move of a player/agent designed using the
is the need for all 0§, to be “aligned” with G, so that as the COIN framework(rather than the value of a random sample
players individually learn how to increase their payofs, of a proposal distribution We call the class of such algo-
also increases. rithms Intelligent Coordinates for sear¢liC).

Other collective systems found in nature that have in- We concentrate on IC with SA as the exploration-based
spired function-maximization algorithms do not involve search algorithm. Like SA, IC is intended to be used “off the
players conducting a noncooperative game. Examples irshelf;” rarely will be the best possible algorithm for a par-
clude equilibrating spin glasses, genomes undergoing nedicular domain. Also like SA, IC is best suited to very large
Darwinian natural selection, and eusocial insect coloniesproblems(so parallelization can be exploitedvhere there is
These have been translated into simulated annedf#y little exploitable gradient information.

[5], genetic algorithm$6], and swarm intelligencg7], re- We present experiments comparing IC and SA on two
spectively. The third crucial issue is most prominent in sucharchetypal domains: bin-packing and an economic model of
algorithms: the need to tradeoff exploration and exploitationpeople choosing formats for their home music systems. In

Recent analysi§9] reveals that a collective’§ value is  bin-packing IC achieves a given value Gfup to three or-
governed by the interaction between these three effects: thaers of magnitude faster than does SA, an improvement ratio
alignment ofg, with G, the “learnability” of g,,, and the that increases linearly with problem size. In the format
exploration/exploitation tradeoffL0]. These three issues are choice problem, each persapchooses several formats to

adopt, ands is the sum of everyone’s “happiness” with their
move. In turn,z's happiness with each of the formats mak-
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music purchased in that format, inversely proportional to theand third terms, the first term is peaked about h@gwhen-

total number of players using that format. Here IC improvesever,\jG is large. Then as desired(probably induces high
G two orders of magnitude faster than SA. We also tested ag,
algorithm dESigned to “endogenize externalities," in the lan- The second term is related to game theory_ As an examp]ey
guage of economics; IC outperformed it by over two ordersy team game, wherg, =G V7 is factored[10]. However,
of magnitude. We also replaced the ring with a small-worldteam games usually have poor third terms, especially in large
network [8,13]. This barely improved IC's performance collectives. This is because agepthooses its move based
(3%), and had no effect on the other algorithms. However ifgn what it can learn about the effect of that move gn
G too was changed, so thats happiness depends on agree-Thjs |earning is based on previous observations of what
ing with her friends’ friends, the improvement is significant valueg,, had when, made its various moves. These obser-
(10%). vations are necessarily made in the presence ofvging
moves of all the other agents. So spy=G, and the moves
Il. SIMPLIFIED THEORY OF COLLECTIVES of the other agents affeéd comparably to how muchy's
o ) move does. Then when there are many of those other agents,
Let ze £ be the joint move of all agents/players in the j; wij pe difficult to distinguish the “signal,” of the effect of
collective, with agentys move being, , andz_,, being the ;5 move on the value of,,, from the “noise,” of the effect
other agents’ moves. We wish to find taenaximizing the  of other agents’ moves. This will make it difficult foy to
provided world utility G(z). We also have pnyate utilities  |earn how to make a move that has high intelligencegfor
{g,}, one for each agenj. These are the functions that the  Term three is related to machine learning. Say that we 11D
individual agents try to maximize. sample the values that the utiliy, has whenever the move

A It willl behuseful to “standalrdizef’l' utilityhfu.nctionks_ SO tgat made by ageny is 2}7, and similarly for when that move is
tre(leat\i/\‘/aeutti) gtﬁérassg?blteg Oc?ir)lltsrih eSClchht aelsrta:?galrré?zzgtion ZE" This gives us a training set of move-utility pairs. The
b P associated learnability\ (U;n, ,z* 237) is defined as

is called intelligence, one form of which is A
|E(grl(z}71')|n7])_E(grl(23]v')|n7])| (3)
'\'vvu<2>§fdf*zw<z’>[U<Z>‘U<Z’>1’ @) Warg,(z,,)In,1+Valg,(z,)n,]’

where the expectations and variances hagenove fixed as
tindicated, withz_, varying according td(z_,|n,).

The denominator in Eq(3) reflects the sensitivity of
g,(2) toz_,, while the numegator reflects its sensitivity to

. 2
z,. So the greaten(g,;n,,z;,2;), the moreg,(z) de-

where® is the Heaviside function, and where the subscrip
on the(normalized measuredu indicates it is restricted to
z' such_thalz’,,?=z,,/. Int_uitively, N,7,U(_z) e[0.0,l_.q is the
percentile rank ofp’s choice of move in comparison to her

alternatives. The ranking is accordiqg to utility and is in pends on which of those two moves ageradopts, in com-
the context OI the ott\er agents making mavs, . parison to its dependence on the joint move of the other
We defineNg andNg as the vectors of the intelligences of agents. In other words, for larger learnability it is easiersfor
all agents for the world utility and the agents’ separate prito distinguish inn,, how its choice between those two moves
vate utilities, respectivelN, 4 (z)=1 means that agenf's  affectsg,, (the signal, from how other agents affegt, (the
move maximizes its utility, given the moves of the othernoise. Formally, the expected intelligence of agefg move

agents. So in game theory termN¥,(z)=1 meansz is a IS an increasing function of the value of(g,;n,.2;.22)

Nash equilibrium. ConverselNg(z’)=1 means that the for all candidate pairs of movez}p?gz- So if sspecifies @,
value of G cannot increase in moving from’ along any  With high learnabilityn,,, term 3 will have the desired form.
single coordinate of. A difference utility has the form g,(2)=G(2)
Indicate the agents’ private utilities tsy Our uncertainty —D(z-,). Any such utility is factored9]. TheD(z_- ’i) that
about the system induces a distributiB(z|s). Bayes’ theo- ~Mmaximizes A(g,:n,.zy.2), for all pairs z;.,z;, is
rem gives us the associat®{G|s): fdz,f(z,)G(z,,z-,) [8,9] (the form of the distributiorf is
beyond the scope of this paperhe associated,, is called
R R . . R the aristocrat utility(AU). If #'s private utility is AU rather
J dNGP(G|NG1S)J dNgP(Ng[Ng,S)P(Ngls). (2)  thanG, then the last two terms of the central equation are
more biased towards higher world utility values. Another

This is the central equation. Say that for sosithe third advantage is that AU is often easier to evaluate tha@ is

" . . : - [9,10].
corjdl_tlonal probablllt)_/ in the lntegrahd IS p??‘ke‘?' nN_y The “wonderful life” utility (WLU) is an approximation
=1, i.e., s probably induces largéprivate utility) intelli-  of AU that avoids calculating expectation values by adopting

gences. If in addition the second probability term is peakeds function f
nearNg=Nj, thenNg is also large. In particular, i guar-
antees thatN, equalsNg identically ¥z, then the second

term is aéd function, regardless dP(z|s). Such a system is whereC, is the clamping parameter. The choice®jf can
called factored. Finally, say that in addition to such seconde set to maximize learnabilityHow best to do this is be-

WLU,=G(2)-G(z-,.C,), 4
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yond the scope of this paper; see beljdwhile not matching TABLE I. Bin-packingG at time 200 forN=20¢=12.
that of AU, for mostC, values WLU'’s learnability is better
than a team game’s. Algorithm AverageG Best Worst % Optimum
Finally, one way to address term 1 of the central equation. .. |, 3324022 5 5 79%
is to incor.porate exploratiqn/exploitation techniques like SA.IC 16 7844017 6 10 0%
We describe how to do this below. COIN WLU 3524090 5 . 64%
COIN TG —7.84+0.15 6 9 0%
lIl. EXPERIMENTS SA —6.00+0.19 4 7 0%

In our version of SA, at the beginning of each time step
a proposal distributiot,(z,) is formed for every separate
coordinatez. Each such distribution assigns probability 75% algorithms, and was multiplied by 0.8 every 100 exploitation
to the movey had at the end of the preceding time step,time steps. In each SA ruh,was slowly modified to gener-
z,1-1, and uniformly divides probability 25% across the ate solutions that differed less from the current solution as
other moves. The “exploration” joint move.,p is then time progressed. _
formed by simultaneously sampling all the,. If G(zexp) In Table | “Best” and “Worst” give the e_xtremal end-of-
>G(z_1), Z, IS Set 107, Otherwisez, is set by sam-  the-runG values(25 runs total, and “%Optimum” the per-
p||ng a Boltzmann distribution over the twgs for “ener- F:entage of runs within one bln'of the best value. Figure 1
gies” —G(z,_1) and — G(Zey,), respectively. Many differ- illustrates that two of the algorithms that account for both
ent annealing schedules were investigated; all results belogrms 2 and 3—IC WLU and COIN WLU—far outperform
are for best schedules found. the others, with the algorithm accounting for all three terms

IC is identical except that each, is replaced by doing best. The worst algorithms were thosg that agcounted
h(Z,)Cpi(Z,)/ 2 (2))C,1(2,). To formc,,, for each for 'or?ly_ a single tel’m(SA and ,COIN TG. Linearly (|.e:,

) . 7 . . optimistically) extrapolating SA's performance from time
f its possible moveg, , agenty collects those instances in s ; :
0 PO n: AgENty 15000 indicates it would take over 1000 times as long as IC
Its .tramlng set for which the MOVE WA, It then fO”T'S a  WLU to reach theG value IC WLU reaches at time 200. In
we_|g.hted average OT the assomaggpvalue§ recorded in the addition the ratio of WLU'’s time 1000 performanéinus
trammg_set.(The weights decay exp_onentlally with hov‘.’ old that of random seargito SA's grows linearly with the size of
that pairis _to reflect nonst_atlc_)narlty of the systehihis the problem. Finally, Fig. 2 illustrates that the benefit of ad-
gives an estimate of whay,, is I|l_<el)_/ to_be for each move dressing terms 2 and 3 grows with the difficulty of the prob-
Z,. Cy, then is the Boltzmann distribution over the possibleg “1n hoth figures SA outperforms IC-TG due to its ben-
577, par?meterlzed by a “learning temperature, with the efiting from more parameter tuning.
energy for eachz, set to thg assqmated est.lmate of what  £q; the format choice proble® is the sum over alN,
g,Iis I|k(_aly to bg.(COIN algorlthms just use th|s_Bo_Itzmann agentsy of 7/s “happiness” with its music formatsG
distribution to givez; directly, with no proposal distribution, —sNa sNi s () oref - whereN. is the
keep/reject step, eic. —1%i=1% 7' eneigh V(1) @y, 7 iPIEL, i f

In all our experiments AU used a mean-field approxima-number of formatsneigh, is the set of players<D hops

tion to pull the expectation inside ti@(-) in the evaluation away from players; pref,; is 7's intrinsic preference for

of D(z_,). Unless otherwise specified, for simplicitg,, fofrmlati (randhomly ﬁxide[oil])_? f}(i)his the total n_umbfer
(used in WLU was set 100 of players choosing format (i.e., the inverse price for

In the bin-packing problemy items, all of size<c, must format i); and w;,, ,, =1 if the choice of players; and

. ) L ; . : n' both include formati, O otherwise. s move says
be assigned into a minimal subsetNbins, without assign-
ing a summed size>c to any one binG of an assignment

pattern is the negative of number of occupied Hit], and -5 - - - y y SA
each agent controls the bin choice of one item. All algo- e . IC- AU —xemmr
rithms use a modified G,” G, even though their perfor- o A = COIN - AU e
mance is ultimately measured wit A0 T .! co:ﬁ i th e
N " coIN- & o
2 2 i IN-G —o-
c c ;
S, _c £y < o -15 ¢t
2 (2 (x, 2) if xj<c ?
soft— N 2 ) g % m:
( C) . 20 |
— 2 Xi— = if x;>c,
= 2

wherex; is the summed size of all items in bin 25

In the IC runs learning temperature was 0.2, and all agent:
made the transition to RL-based moves after a period of 100
purely randone’s that was used to generate the initial train-  FIG. 1. Average bin-packin@ for N=50, c=10. All error bars
ing sets{n,}. Exploitation temperature started at 0.5 for all <0.31 except IC-AU and COIN-AU are0.57.
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FIG. 2. G vs ¢ for N=20 att=200. All error bars<0.34. FIG. 3. G(t=200) for 100 agents. In order from left to right,

D={1,1,3,3, and topologies aré_,W,L,W}.

which of four formatsnot to use. For examp|e, WLLJ value. “Short links” (L) means all extra links connected
=3, i eneighﬂﬁ(i) Q, pref,;, where Q, ;=-1 if players two hops apart, and “small-world8N) means there

agent7'’s choice set includes but agentz's do not, and WalanI(E) suc':h.r?st.rlctlon.f ilustrates the short .
equals 0 otherwise. Both =1 and 3 were investigated. con's interior pertormance iiustrates the shortcoming

In Fig. 3, “IC Econ” refers to WLU IC, with clamping of economicslike algorithms. Fdd=1 SA d_id not benefit
making the agent decline all formats. It is a crude way offr(?m srr:)all World_s connect|on_s, and IC yanants bar_ely ben-
endogenizing externalities, and then rescaling and interlea -f'ted.(?’ %), despite the associated drop in average internode
ing with SA to improve performance. “IC-WLU” instead op distance. However I also increased, so th& directly

clampsz's move to zerdas per the theory of collectiveso reflected the change in the topology, then the gain with a
0,

that » chooses all formats. Learning temperature was O_4§mall worlds topology grew to 10%.

and expl0|tat|on_ temperature was 0.Qfhnealing prow_ded ACKNOWLEDGMENTS
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