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Improving search algorithms by using intelligent coordinates
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We consider algorithms that maximize a global functionG in a distributed manner, using a different adaptive
computational agent to set each variable of the underlying space. Each agenth is self-interested; it sets its
variable to maximize its own functiongh . Three factors govern such a distributed algorithm’s performance,
related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit all three
factors by modifying a search algorithm’s exploration stage: rather than random exploration, each coordinate of
the search space is now controlled by a separate machine-learning-based ‘‘player’’ engaged in a noncooperative
game. Experiments demonstrate that this modification improves simulated annealing~SA! by up to an order of
magnitude for bin packing and for a model of an economic process run over an underlying network. These
experiments also reveal interesting small-world phenomena.
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I. INTRODUCTION

Many systems found in nature have inspired compu
tional algorithms for how to maximize a provided hig
dimensional function. In some of these algorithms the val
of the underlying coordinates are controlled by separ
players engaged in a noncooperative game; their equilibr
joint state~hopefully! maximizes the provided global func
tion G. Examples of such natural systems are auctions
clearing of markets. Typically, in the computational alg
rithms inspired by such ‘‘collectives’’ of players, eac
‘‘player’’ is a separate machine-learning algorithm@1,2#, e.g.,
a reinforcement-learning~RL! algorithm @3,4#.

There are three crucial issues concerning such collecti
The first is whether the payoff functiongh of each playerh
is sufficiently sensitive to the value of the coordinateh con-
trols in comparison to those of the other coordinates. If t
is not the case, it is not feasible forh to learn how to set its
coordinate to achieve high payoff. The second crucial is
is the need for all ofgh to be ‘‘aligned’’ with G, so that as the
players individually learn how to increase their payoffs,G
also increases.

Other collective systems found in nature that have
spired function-maximization algorithms do not involv
players conducting a noncooperative game. Examples
clude equilibrating spin glasses, genomes undergoing n
Darwinian natural selection, and eusocial insect colon
These have been translated into simulated annealing~SA!
@5#, genetic algorithms@6#, and swarm intelligence@7#, re-
spectively. The third crucial issue is most prominent in su
algorithms: the need to tradeoff exploration and exploitati

Recent analysis@9# reveals that a collective’sG value is
governed by the interaction between these three effects
alignment ofgh with G, the ‘‘learnability’’ of gh , and the
exploration/exploitation tradeoff@10#. These three issues ar
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traditionally studied in three separate fields: game theo
machine learning/statistics, and optimization theory, resp
tively. So any complete science of collectives must incorp
rate insights from all three fields; no single one of the fie
suffices.

Previous work in the COllective INtelligence~COIN!
framework has partially accomplished this, addressing
first two issues. That work is an extension of game-theor
mechanism design, to include off-equilibrium behavio
learnability issues, nonhumangh ~e.g.,gh for which incen-
tive compatibility is irrelevant!, and arbitraryG @11,12#. In
domains from network routing to congestion problem
COIN-based algorithms beat traditional techniques, by up
several orders of magnitude@4,10#.

Here we address all three issues at once, by replacing
exploration step in any exploration/exploitation search al
rithm. In the exploration step each separate coordinate of
multicoordinate space being searched is made ‘‘intelligen
its value being the move of a player/agent designed using
COIN framework~rather than the value of a random samp
of a proposal distribution!. We call the class of such algo
rithms Intelligent Coordinates for search~IC!.

We concentrate on IC with SA as the exploration-bas
search algorithm. Like SA, IC is intended to be used ‘‘off t
shelf;’’ rarely will be the best possible algorithm for a pa
ticular domain. Also like SA, IC is best suited to very larg
problems~so parallelization can be exploited!, where there is
little exploitable gradient information.

We present experiments comparing IC and SA on t
archetypal domains: bin-packing and an economic mode
people choosing formats for their home music systems
bin-packing IC achieves a given value ofG up to three or-
ders of magnitude faster than does SA, an improvement r
that increases linearly with problem size. In the form
choice problem, each personh chooses several formats t
adopt, andG is the sum of everyone’s ‘‘happiness’’ with the
move. In turn,h’s happiness with each of the formats ma
ing up her move is set by three factors: which of her nea
neighbors on a ring network~h’s ‘‘friends’’ ! choose that for-
mat;h’s intrinsic preference for that format; and the price
©2004 The American Physical Society01-1
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music purchased in that format, inversely proportional to
total number of players using that format. Here IC improv
G two orders of magnitude faster than SA. We also tested
algorithm designed to ‘‘endogenize externalities,’’ in the la
guage of economics; IC outperformed it by over two ord
of magnitude. We also replaced the ring with a small-wo
network @8,13#. This barely improved IC’s performanc
~3%!, and had no effect on the other algorithms. Howeve
G too was changed, so thath’s happiness depends on agre
ing with her friends’ friends, the improvement is significa
~10%!.

II. SIMPLIFIED THEORY OF COLLECTIVES

Let zPz be the joint move of all agents/players in th
collective, with agenth’s move beingzh , andz2h being the
other agents’ moves. We wish to find thez maximizing the
provided world utility G(z). We also have private utilities
$gh%, one for each agenth. These are the functions that th
individual agents try to maximize.

It will be useful to ‘‘standardize’’ utility functions so tha
the value they assign toz only reflects their ranking ofz
relative to other possible points inz. Such a standardizatio
is called intelligence, one form of which is

Nh,U~z![E dmz2h
~z8!Q@U~z!2U~z8!#, ~1!

whereQ is the Heaviside function, and where the subscr
on the~normalized! measuredm indicates it is restricted to
z8 such thatz2h8 5z2h . Intuitively, Nh,U(z)P@0.0,1.0# is the
percentile rank ofh ’s choice of move in comparison to he
alternatives. The ranking is according to utilityU, and is in
the context of the other agents making movez2h .

We defineNW G andNW g as the vectors of the intelligences
all agents for the world utility and the agents’ separate p
vate utilities, respectively.Nh,gh

(z)51 means that agenth ’s
move maximizes its utility, given the moves of the oth
agents. So in game theory terms,NW g(z)51W meansz is a
Nash equilibrium. Conversely,NW G(z8)51W means that the
value of G cannot increase in moving fromz8 along any
single coordinate ofz.

Indicate the agents’ private utilities bys. Our uncertainty
about the system induces a distributionP(zus). Bayes’ theo-
rem gives us the associatedP(Gus):

E dNW GP~GuNW G ,s!E dNW gP~NW GuNW g ,s!P~NW gus!. ~2!

This is the central equation. Say that for somes the third
conditional probability in the integrand is peaked nearNW g

51W , i.e., s probably induces large~private utility! intelli-
gences. If in addition the second probability term is peak
nearNW G5NW g , thenNW G is also large. In particular, ifs guar-
antees thatNW g equalsNW G identically ;z, then the second
term is ad function, regardless ofP(zus). Such a system is
called factored. Finally, say that in addition to such seco
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and third terms, the first term is peaked about highG when-
everNW G is large. Then as desired,s ~probably! induces high
G.

The second term is related to game theory. As an exam
a team game, wheregh5G ;h is factored@10#. However,
team games usually have poor third terms, especially in la
collectives. This is because agenth chooses its move base
on what it can learn about the effect of that move ongh .
This learning is based on previous observations of w
valuegh had whenh made its various moves. These obs
vations are necessarily made in the presence of the~varying!
moves of all the other agents. So saygh5G, and the moves
of the other agents affectG comparably to how muchh’s
move does. Then when there are many of those other ag
it will be difficult to distinguish the ‘‘signal,’’ of the effect of
h’s move on the value ofgh , from the ‘‘noise,’’ of the effect
of other agents’ moves. This will make it difficult forh to
learn how to make a move that has high intelligence forgh .

Term three is related to machine learning. Say that we
sample the values that the utilitygh has whenever the mov
made by agenth is zh

1 , and similarly for when that move is
zh

2 . This gives us a training set of move-utility pairsnh . The
associated learnability,L(U;nh ,zh

1 ,zh
2) is defined as

uE„gh~zh
1 ,• !unh…2E„gh~zh

2 ,• !unh…u

AVar@gh~zh
1 ,• !unh#1Var@gh~zh

2 ,• !unh#
, ~3!

where the expectations and variances haveh’s move fixed as
indicated, withz2h varying according toP(z2hunh).

The denominator in Eq.~3! reflects the sensitivity of
gh(z) to z2h , while the numerator reflects its sensitivity t
zh . So the greaterL(gh ;nh ,zh

1 ,zh
2), the moregh(z) de-

pends on which of those two moves agenth adopts, in com-
parison to its dependence on the joint move of the ot
agents. In other words, for larger learnability it is easier foh
to distinguish innh how its choice between those two mov
affectsgh ~the signal!, from how other agents affectgh ~the
noise!. Formally, the expected intelligence of agenth’s move
is an increasing function of the value ofL(gh ;nh ,zh

1 ,zh
2)

for all candidate pairs of moves,zh
1 ,zh

2 . So if s specifies agh

with high learnabilitynh , term 3 will have the desired form
A difference utility has the form gh(z)5G(z)

2D(z2h). Any such utility is factored@9#. TheD(z2h) that
maximizes L(gh ;nh ,zh

1 ,zh
2), for all pairs zh

1 ,zh
2 , is

*dzh f (zh)G(zh ,z2h) @8,9# ~the form of the distributionf is
beyond the scope of this paper!. The associatedgh is called
the aristocrat utility~AU!. If h’s private utility is AU rather
than G, then the last two terms of the central equation a
more biased towards higher world utility values. Anoth
advantage is that AU is often easier to evaluate than isG
@9,10#.

The ‘‘wonderful life’’ utility ~WLU! is an approximation
of AU that avoids calculating expectation values by adopt
d function f

WLUh[G~z!2G~z2h ,Ch!, ~4!

whereCh is the clamping parameter. The choice ofCh can
be set to maximize learnability.~How best to do this is be-
1-2
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yond the scope of this paper; see below.! While not matching
that of AU, for mostCh values WLU’s learnability is bette
than a team game’s.

Finally, one way to address term 1 of the central equat
is to incorporate exploration/exploitation techniques like S
We describe how to do this below.

III. EXPERIMENTS

In our version of SA, at the beginning of each time stet
a proposal distributionhh(zh) is formed for every separat
coordinateh. Each such distribution assigns probability 75
to the moveh had at the end of the preceding time ste
zh,t21, and uniformly divides probability 25% across th
other moves. The ‘‘exploration’’ joint movezexpl is then
formed by simultaneously sampling all thehh . If G(zexpl)
.G(zt21), zh,t is set tozexpl . Otherwisezt is set by sam-
pling a Boltzmann distribution over the twoz’s for ‘‘ener-
gies’’ 2G(zt21) and2G(zexpl), respectively. Many differ-
ent annealing schedules were investigated; all results be
are for best schedules found.

IC is identical except that eachhh is replaced by
hh(zh)ch,t(zh)/(zh8

hh(zh8 )ch,t(zh8 ). To form ch,t , for each

of its possible moveszh , agenth collects those instances i
its training set for which the move waszh . It then forms a
weighted average of the associatedgh values recorded in the
training set.~The weights decay exponentially with how o
that pair is to reflect nonstationarity of the system.! This
gives an estimate of whatgh is likely to be for each move
zh . ch,t then is the Boltzmann distribution over the possib
zh , parameterized by a ‘‘learning temperature,’’ with th
‘‘energy’’ for eachzh set to the associated estimate of wh
gh is likely to be.~COIN algorithms just use this Boltzman
distribution to givezt directly, with no proposal distribution
keep/reject step, etc.!

In all our experiments AU used a mean-field approxim
tion to pull the expectation inside theG(•) in the evaluation
of D(z2h). Unless otherwise specified, for simplicity,Ch

~used in WLU! was set to 0W .
In the bin-packing problem,N items, all of size,c, must

be assigned into a minimal subset ofN bins, without assign-
ing a summed size.c to any one bin.G of an assignmen
pattern is the negative of number of occupied bins@14#, and
each agent controls the bin choice of one item. All alg
rithms use a modified ‘‘G, ’’ Gsoft, even though their perfor
mance is ultimately measured withG

Gsoft[5 (
i 51

N F S c

2D 2

2S xi2
c

2D 2G if xi<c

2(
i 51

N S xi2
c

2D 2

if xi.c,

~5!

wherexi is the summed size of all items in bini.
In the IC runs learning temperature was 0.2, and all age

made the transition to RL-based moves after a period of
purely randomz’s that was used to generate the initial trai
ing sets$nh%. Exploitation temperature started at 0.5 for
01770
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algorithms, and was multiplied by 0.8 every 100 exploitati
time steps. In each SA run,h was slowly modified to gener
ate solutions that differed less from the current solution
time progressed.

In Table I ‘‘Best’’ and ‘‘Worst’’ give the extremal end-of-
the-runG values~25 runs total!, and ‘‘%Optimum’’ the per-
centage of runs within one bin of the best value. Figure
illustrates that two of the algorithms that account for bo
terms 2 and 3—IC WLU and COIN WLU—far outperform
the others, with the algorithm accounting for all three ter
doing best. The worst algorithms were those that accoun
for only a single term~SA and COIN TG!. Linearly ~i.e.,
optimistically! extrapolating SA’s performance from tim
15 000 indicates it would take over 1000 times as long as
WLU to reach theG value IC WLU reaches at time 200. I
addition the ratio of WLU’s time 1000 performance~minus
that of random search! to SA’s grows linearly with the size o
the problem. Finally, Fig. 2 illustrates that the benefit of a
dressing terms 2 and 3 grows with the difficulty of the pro
lem. In both figures SA outperforms IC-TG due to its be
efiting from more parameter tuning.

For the format choice problemG is the sum over allNa
agentsh of h’s ‘‘happiness’’ with its music formats:G
5(h51

Na ( i 51
Nf (h8Pneighh

q( i ) vh,h8,iprefh,i , where Nf is the

number of formats;neighh is the set of players<D hops
away from playerh; prefh,i is h’s intrinsic preference for
format i ~randomly fixedP@0,1#!; q( i ) is the total number
of players choosing formati ~i.e., the inverse price for
format i ); and v i ,h,h851 if the choice of playersh and
h8 both include format i, 0 otherwise. h’s move says

TABLE I. Bin-packingG at time 200 forN520,c512.

Algorithm AverageG Best Worst % Optimum

IC WLU 23.3260.22 2 8 72%
IC TG 27.8460.17 6 10 0%
COIN WLU 23.5260.20 2 7 64%
COIN TG 27.8460.15 6 9 0%
SA 26.0060.19 4 7 0%

FIG. 1. Average bin-packingG for N550, c510. All error bars
<0.31 except IC-AU and COIN-AU are<0.57.
1-3
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which of four formatsnot to use. For example, WLUh
5(h,i ,h8Pneighh

q( i ) Vh8,i prefh,i , where Vh8,i521 if
agenth8’s choice set includesi but agenth’s do not, and
equals 0 otherwise. BothD51 and 3 were investigated.

In Fig. 3, ‘‘IC Econ’’ refers to WLU IC, with clamping
making the agent decline all formats. It is a crude way
endogenizing externalities, and then rescaling and interle
ing with SA to improve performance. ‘‘IC-WLU’’ instead
clampsh’s move to zero~as per the theory of collectives!, so
that h chooses all formats. Learning temperature was 0
and exploitation temperature was 0.05~annealing provided
no advantage since runs were short!. We usedm-node ring
topologies with an extra 0.06-m random links added, a new
such set for each of the 50 runs giving a plotted aver

FIG. 2. G vs c for N520 at t5200. All error bars<0.34.
-

tt.

01770
f
v-

4,

e

value. ‘‘Short links’’ ~L! means all extra links connecte
players two hops apart, and ‘‘small-worlds’’~W! means there
was no such restriction.

IC Econ’s inferior performance illustrates the shortcomi
of economicslike algorithms. ForD51 SA did not benefit
from small worlds connections, and IC variants barely be
efited~3%!, despite the associated drop in average intern
hop distance. However ifD also increased, so thatG directly
reflected the change in the topology, then the gain with
small worlds topology grew to 10%.
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FIG. 3. G(t5200) for 100 agents. In order from left to righ
D5$1,1,3,3%, and topologies are$L,W,L,W%.
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